skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Attene, Marco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many problems in computer graphics can be formulated as finding the global minimum of a function subject to a set of non-linear constraints (Minimize), or finding all solutions of a system of non-linear constraints (Solve). We introduce MiSo, a domain-specific language and compiler for generating efficient C++ code for low-dimensional Minimize and Solve problems, that uses interval methods to guarantee conservative results while using floating point arithmetic. We demonstrate that MiSo-generated code shows competitive performance compared to hand-optimized codes for several computer graphics problems, including high-order collision detection with non-linear trajectories, surface-surface intersection, and geometrical validity checks for finite element simulation. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. We present a numerically robust algorithm for computing the constrained Delaunay tetrahedrization (CDT) of a piecewise-linear complex, which has a 100% success rate on the 4408 valid models in the Thingi10k dataset. We build on the underlying theory of the well-known tetgen software, but use a floating-point implementation based on indirect geometric predicates to implicitly represent Steiner points: this new approach dramatically simplifies the implementation, removing the need for ad-hoc tolerances in geometric operations. Our approach leads to a robust and parameter-free implementation, with an empirically manageable number of added Steiner points. Furthermore, our algorithm addresses a major gap in tetgen's theory which may lead to algorithmic failure on valid models, even when assuming perfect precision in the calculations. Our output tetrahedrization conforms with the input geometry without approximations. We can further round our output to floating-point coordinates for downstream applications, which almost always results in valid floating-point meshes unless the input triangulation is very close to being degenerate. 
    more » « less
  3. null (Ed.)
  4. Abstract We introduce the firstexactroot parity counter for continuous collision detection (CCD). That is, our algorithm computes the parity (even or odd) of the number of roots of the cubic polynomial arising from a CCD query. We note that the parity is unable to differentiate between zero (no collisions) and the rare case of two roots (collisions). Our method does not have numerical parameters to tune, has a performance comparable to efficient approximate algorithms, and is exact. We test our approach on a large collection of synthetic tests and real simulations, and we demonstrate that it can be easily integrated into existing simulators. 
    more » « less